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Abstract
The competitor release effect applied to carnivore species: how red foxes can increase in numbers when per-
secuted.— The objective of our study was to numerically simulate the population dynamics of a hypothetical 
community of three species of small to medium–sized carnivores subjected to non–selective control within the 
context of the competitor release effect (CRE). We applied the CRE to three carnivore species, linking interspecific 
competition with predator control efforts. We predicted the population response of European badger, the red fox 
and the pine marten to this wildlife management tool by means of numerical simulations. The theoretical res�
ponses differed depending on the intrinsic rate of growth (r), although modulated by the competition coefficients. 
The red fox, showing the highest r value, can increase its populations despite predator control efforts if control 
intensity is moderate. Populations of the other two species, however, decreased with control efforts, even reaching 
extinction. Three additional theoretical predictions were obtained. The conclusions from the simulations were: 
1) predator control can play a role in altering the carnivore communities; 2) red fox numbers can increase due 
to control; and 3) predator control programs should evaluate the potential of unintended effects on ecosystems.

Key words: Predator control, Wildlife management, Competition, Generalist predator, Population dynamics, 
Population growth.

Resumen
El efecto liberador de competidores aplicado a las especies de carnívoros: cómo puede aumentar el número de 
zorros cuando son perseguidos.— El objetivo de nuestro estudio consistió en simular numéricamente la diná�
mica de poblaciones de una comunidad hipotética de tres especies de carnívoros de talla pequeña y mediana 
sometidas a un control no selectivo en el contexto del efecto liberador de competidores. Aplicamos el modelo 
del efecto liberador de competidores, que relaciona la competencia interespecífica con el control de predadores, 
a tres especies de carnívoro. Así, pudimos predecir la respuesta de las poblaciones de tejón, zorro y marta 
frente a este mecanismo de gestión de la fauna silvestre  por medio de simulaciones numéricas. Las respuestas 
teóricas fueron distintas en función de la tasa intrínseca de crecimiento (r), si bien estuvieron reguladas por los 
coeficientes de competencia. El zorro, con el valor de r más elevado, puede aumentar sus poblaciones a pesar 
del control de predadores si este es moderado. Por el contrario, las poblaciones de las otras dos especies dismi�
nuyeron con el control hasta extinguirse. Obtuvimos también tres predicciones teóricas. Las conclusiones de las 
simulaciones fueron: 1) el control de predadores puede alterar las comunidades de carnívoros; 2) la población 
de zorros puede aumentar debido al control y 3) los programas de control de predadores deberían evaluar los 
efectos indeseados que podrían producirse en los ecosistemas.

Palabras clave: Control de predadores, Gestión ambiental, Competencia, Predadores generalistas, Dinámica de 
poblaciones, Crecimiento poblacional. 
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Introduction 

Populations of various taxonomic groups are declining 
sharply due to human activities in the environment 
(Groombridge, 1992). In particular, predator control 
has produced a negative and strong impact on po�
pulations of many species of large carnivores (e.g. 
Schaller, 1996; Breteinmoser, 1998; Rodríguez & 
Delibes, 2002). A lot of smaller carnivore species, 
such as the marten species (Martes spp.), the Euro�
pean wildcat (Felis silvestris Schreber, 1775) or the 
European badger (Meles meles L.), are also affected 
(Langley & Yalden, 1977; Lankester et al., 1991; Rug�
giero et al., 1994; Caro & Stoner, 2003; Lozano et al., 
2007). In contrast, adaptable species of carnivores, 
such as the red fox (Vulpes vulpes L.), can become 
more abundant in some places as the result of such 
activities (Baker & Harris, 2006; Beja et al., 2009).

The main goal of predator control, in both natural 
reserves interested in protecting sensitive species and 
hunting lands with an interest in harvest management, 
is to reduce the incidence of predation (Tapper et al., 
1991; Harris & Saunders, 1993; Reynolds & Tapper, 
1996; Côte & Sutherland, 1997). Predator control te�
chniques vary greatly both in their degree of selectivity 
and effectiveness with regard to the persecuted species 
(e.g. Calver et al., 1989; Windberg & Knowlton, 1990; 
Tapper et al., 1991; Hein & Andelt, 1994; Reynolds 
& Tapper, 1996; Harding et al., 2001; Rushton et 
al., 2006; Beja et al., 2009). Unfortunately, many of 
these methods are non–selective (e.g. snares, traps, 
poisoned baits), and negatively affect both the species 
considered a pest and others of conservation concern 
(Herranz, 2000; Duarte & Vargas, 2001; Whitfield et al., 
2003; Rodríguez & Delibes, 2004; Virgós & Travaini, 
2005; Beja et al., 2009; Cabezas–Díaz et al., 2009; 
Estes & Terborgh, 2010; Lozano et al., 2010).

Many studies have been carried out around the 
world dealing with the effects of predator control on 
prey populations (Reynolds & Tapper, 1996; Côte 
& Sutherland, 1997; Valkama et al., 2005; Oro & 
Martínez–Abraín, 2007). Nevertheless, the effects 
of such control on the population parameters of the 
targeted predators, or on the structure of their natural 
communities, have received much less attention (e.g. 
Yoneda & Maekawa, 1982; Harris & Saunders, 1993; 
Reynolds et al., 1993; Estes & Terborgh, 2010).

It is well established that predation, competition and 
their interaction are important factors shaping natural 
communities (Chase et al., 2002; Caro & Stoner, 
2003). Interspecific interactions within the communities 
of carnivores can cause the extinction or exhaustion 
of specialist species or larger predators (e.g. lynxes, 
wolves, coyotes). For example, such interactions 
may be interguild predation or competition through 
exploitation (Erlinge & Sandell, 1988; Polis & Holt, 
1992; Palomares & Caro, 1999; Müller & Brodeur, 
2002). After the disappearance of these top predators, 
numbers of smaller species could increase, a pattern 
also observed in more generalist species such as the 
Iberian mongoose (Herpestes ichneumon L.) or the 
red fox (see Palomares et al., 1995; Creel & Creel, 
1996; Palomares & Caro, 1999). 

These data imply that different predator mana�
gement systems could have different effects on the 
communities of predators and indirectly affect the 
levels of predation on the prey species (Estes & 
Terborgh, 2010; Levi et al., 2012). This could even 
produce paradoxical effects, such as a reduction in the 
diversity and/or abundance of game species or those 
of conservation interest, as a result of the increase 
in the abundance of generalist carnivores (Soulé et 
al., 1988; Courchamp et al., 1999a; Crooks & Soulé, 
2000; Caut et al., 2007). 

However, given the lack of field data in relation to 
this issue, and the difficulty involved in obtaining such 
information, an alternative to study the possible effects 
of the applied control techniques on the predator po�
pulations consists of developing simple mathematical 
models. With a minimum number of assumptions, it 
is possible analyse the population dynamics of these 
species, and the interspecific interactions on commu�
nity composition (see the application of this type of 
procedure in the works by Shorrocks & Begon, 1975; 
Courchamp et al., 1999a, 1999b; Caut et al., 2007; 
Fenton & Brockhurst, 2007).

Caut et al. (2007) used this theoretical approach 
to describe a new ecological mechanism named the 
Competitor Release Effect (hereafter CRE). According 
to this mechanism, an inferior competitor can increase 
in numbers if the superior competitor is controlled, due 
to the competitive interactions between them. This oc�
curs even though the inferior competitor is also being 
killed. Moreover, at the same time, theoretical results 
show negative effects on the population of a shared 
prey. Shared prey can decline because while numbers 
of a superior competitor are decreasing, there may be 
an unwanted and unexpected increase in numbers 
of the inferior competitor. Caut et al used empirical 
data from an eradication program of rodents living on 
islands to test and support their competitor release 
hypothesis. They also suggested that the same effect 
could be found in communities of carnivore mammals, 
where the population of a competitor such as the red 
fox could increase if the community of predators is 
being managed using predator control.

The objective of our study was to numerically 
simulate the population dynamics of a hypothetical 
community of three species of small to medium–sized 
carnivores subjected to non–selective control (i.e. 
where all the individuals are being eliminating with 
similar probability), within the context of the proposed 
CRE (Caut et al., 2007). The selected species for the 
simulations were the European badger, the red fox and 
the pine marten (Martes martes L.). Reasons for this 
choice were: (i) these species are sympatric in a wide 
range of Europe (Mitchell–Jones et al., 1999); (ii) there 
is evidence of competition among them (Lindström 
et al., 1995; Palomares & Caro, 1999; Trewby et al., 
2008); (iii) all three species are often controlled (e.g. 
Côté & Sutherland, 1997; Virgós & Travaini, 2005; 
Trewby et al., 2008) and; (iv) information about their 
populational parameters can be found in the scientific 
literature (Bright, 1993).

Our study differs from that of Caut et al. (2007) in 
that we evaluated a third species in the mathematical 
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model. Moreover, known (i.e. real) values for the po�
pulation growth rates were used, so the model should 
be more realistic. We specifically wanted to know 
whether the CRE could increase the population of 
red fox when the three species are being controlled, 
and if so, under what conditions such an increase 
occurs. Furthermore, we used the results of numerical 
simulations from the theoretical model to obtain a set 
of predictions which could be tested with empirical 
data when available. 

Material and methods

We modified the CRE model from Caut et al. (2007) 
by adding an equation to simulate the populational 
dynamics of a third competitor. This model was 
based on the classical Lotka–Volterra equations 
(Powell & Zielinski, 1983; Begon et al., 1996), which 
were modified to incorporate an additional factor of 
linear mortality (in a similar way that in Shorrocks 
& Begon, 1975; Fenton & Brockhurst, 2007). The 
slope of this new factor is independent from the 
density and represents the mortality caused by the 
predator control involved (degree of non–selectivity). 
Thus, this modification of the classical model, which 
only includes density–dependent mortality implicitly 
in the population growth rate, is analogous to those 
previously proposed by Gause (1934, 1935). In these 
studies, the author considered mortality independent 
from density, possibly caused by factors such as para�
sites, non–specific diseases, or other mortality factors 
(e.g. Caut et al., 2007; Fenton & Brockhurst, 2007).

Our model is defined by three equations that govern 
the coupled dynamics of three species of competing 
carnivores:

	 	       At + αAB Bt + αAC CtAt+1= At + rA At (1 –                              ) – ω At   			   KA

		        Bt + αBA At + αBC CtBt+1 = Bt + rB Bt (1 –                             ) – ω Bt			   KB

	 	       Ct + αCA At + αCB BtCt+1 = Ct + rC Ct (1 –                             ) – ω Ct			   KC

where A, B and C represent the number of individuals 
of each particular species at time t. The intrinsic growth 
rates of each population are rA, rB and rC. The effect 
of the interspecific competition of one species against 
another is represented by α (which is the competition 
coefficient), and the carrying capacity of the environ�
ment for each population is K. Finally, included in 
each equation is the parameter ω (control coefficient) 
which represents the extraction rate of each species 
as a result of the non–selective control applied. This 
can be interpreted as the proportion of the population 
of a given species which dies during a period t as 
a consequence of the control. Because the model 
attempts to determine the effect of non–selective 
control, this ω parameter was fixed with the same 

value for all the species of the community, although 
more complex scenarios could be developed within 
the premise of non–selective control. 

In this scenario, the set of values of the parameters 
was chosen to take into consideration that each species 
of the model represented one for which the intrinsic 
growth rate (r) was available (Bright, 1993). These va�
lues are from British populations of each species, but 
we assumed that the growth rates were similar for other 
regions of Europe (Turchin, 2003). The three carnivore 
species were the European badger (species A), the 
pine marten (species B), and the red fox (species C). 
The carrying capacities (K) were set as constant and 
identical to facilitate the interpretation of results from the 
numerical analysis. The selected value is theoretical but 
also realistic in function of the considered spatial scale 
(K = 30, approximately equivalent to 25–30 km2 consi�
dering mean density values of the species in Europe; 
Wilson & Mittermeier, 2009), and it allows a sufficient 
range of variation to compare the populational dynamics 
among species. Likewise, the competitive interactions 
among the species were considered symmetrical (i.e. AB 
= AC = BA = BC = CA = CB). Although asymmetries can 
be expected in the wild (e.g. Palomares & Caro, 1999), 
unfortunately no quantitative data are available to create 
more realistic scenarios. Table 1 shows the demographic 
values used for the parameters in the model.

A total of 72 deterministic numerical analyses were 
performed per species: one for each combination of 
parameters, varying in equal intervals α from 0.1 to 
0.9, and ω from 0 to 0.7. The value reached by the 
population in the equilibrium for each combination of 
parameters was graphically represented. Furthermo�
re, to test whether the predictions arising from the 
theoretical model were sufficiently robust to stand up 
against small variations in the values for the intrinsic 
growth rate (r), a sensitivity analysis was conducted. 
This consisted of creating simulations varying by a 
single parameter and leaving the other parameters 
constant. Thus, α = 0.5, ω = 0.3, rA = 0.46 and rC = 1.1 
were fixed, whereas rB (the intermediate intrinsic 
growth rate regarding original values) varied in five 
intervals from 0.4 to 1.1. This also could be equivalent 
to simulating the population dynamics of a competi�
ting species other than the pine marten (species B), 
showing different values of intrinsic growth rate. All 
these analyses were performed using the computer 
program STELLA v.9.1.4 for Windows (ISEE, 2010).

The basic model used here and the Lotka–Volterra 
equations have been analytically studied elsewhere 
using the same assumptions (for more details see 
Gilpin, 1975; Shorrocks & Begon, 1975; Caut et al., 
2007). Therefore, our work is an extension of these ba�
sic models, incorporating a level of predator community 
complexity more commonly found in natural systems. 

Results

Simulation results

From our numerical simulations, we found a qualita�
tively different behaviour among the carnivore popu�
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lations, considering the competitive interactions that 
can occur in the community as a result of a predator 
control program. The sensitivity analysis of the system 
with regard to the value of species B (r = 0.57, the 
pine marten) indicates that when there is intermediate 
competition (0.5) and moderate control (0.3), the varia�
tion in the intrinsic growth rate affects the equilibrium 
value of species C (r = 1.1, the red fox) but does not 
appear to affect the species A (r = 0.46, the European 
badger). There is a critical value for rB, at 0.9, above 
which the red fox population does not rise above K* 
(the maximum population value in the presence of 
the other two species, in this scenario K*  =  15 in�
dividuals). At intermediate levels of competition, the 
model predicts a 'paradoxical effect' produced by the 
non–selective control. In other words, when species 
B shows an r > 0.9 (this being a threshold value), the 
population increases rather than decreases, despite 
the applied control.

The simulations of the general scenario, where 
the intrinsic growth rates were fixed (0.46, 0.57 and 
1.1), produced a system dynamic showing very clear 
patterns of population change depending on com�
petition and predator control intensity. Thus, if the 
intrinsic growth rate (r) of one species was below the 
threshold value r' = 0.9, then the population would 
change in time, always showing a decrease in its 
numbers (see figs. 1, 2). The simulated population 
with the lowest intrinsic growth rate, corresponding 
to the European badger (r = 0.46, fig. 1), showed a 
linear decrease in its numbers when predator control 
was applied. This population became completely ex�
tinct with an intermediate degree of control intensity 
(0.5), in conditions of minimum competition (0.1). The 
increase in competition implies that the population 
could be destroyed under conditions of even less 
intense non–selective control.

Likewise, the general pattern observed in the chan�
ge of the population with a slightly higher growth rate 
(r = 0.57), belonging in this case to the pine marten, 
was practically the same (see fig. 2). The difference 
was that the higher growth rate implied that the popu�
lation of this species needed a slightly higher level of 
control intensity than the badger to disappear: a value 
of 0.6, under conditions of minimum competition (0.1).

In strong contrast, the population of the red fox 
behaved in a very different manner under conditions 
of non–selective control, and depending on competition 
(see fig. 3). The pattern presented a very marked non–
linearity which could be attributed to their high intrinsic 
growth rate (r = 1.1). Without competition, or with very 
low levels of competition (up to 0.2), control efforts 
reduced the population in a linear sense, such as in 
the previous species, but maintained a large number of 
individuals even under conditions of very intense control 
(0.7). The red fox population could reach extinction 
only with a very high degree of control intensity, the 
value of control coefficient being near the maximum. 
At a medium level of control intensity, the population 
maintained approximately half the individuals of the 
population maximum (K), regardless of competition. 

Furthermore, with a low level of competition (0.3) 
this population was not affected by the number of 
individuals when low intensities of non–selective 
control were applied (< 0.4). Surprisingly, when star�
ting from this low level of competition (0.3), the low 
control intensities (< 0.4) led to a sharper population 
increase (the paradoxical effect mentioned above) if 
there was a higher degree of competition with the 
other two species. The increase in red fox occurred 
precisely when there was a decrease in the number 
of their competing species, whose populations showed 
lower intrinsic growth rates. The final result of the 
application of predator control under these conditions 
could therefore be a red fox population with double 
the initial number of individuals. When the degree of 
competition was higher, the intensity of control needed 
to be lower to reach the maximum level of increase. 
The absolute population maximum was then also 
reached when competition was maximal. 

Predictions of the theoretical model

Based on the results of the numerical analysis and 
due to the CRE, we made the following set of three 
predictions: i) populations of red fox showing maximal 
abundances (or those of other generalist predators 
showing a high intrinsic growth rate) will be present 
in areas subjected to predator control (usually areas 
devoted to small game hunting); ii) statistically signi�

Table 1. Demographic values for parameters of the model: r is the intrinsic growth rate for each species, 
and K is the carrying capacity of the environment.

Tabla 1. Valores demográficos utilizados para los parámetros del modelo: r es la tasa intrínseca de 
crecimiento para cada especie y K es la capacidad de carga del medio.

Letter in equation	 A	 B	 C
Species	 M. meles (badger)	 M. martes (pine marten) 	 V. vulpes (red fox)
r	 0.46	 0.57	 1.1
K	 30	 30	 30
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Fig. 1. Functions for European badger (Meles meles) populations considering the competition coefficients (α) 
that relate the value for the population in dynamic equilibrium according to the intensity degree of non–selective 
control (ω). All populations become extinct at intermediate degrees of control intensity, following a linear pattern.

Fig. 1. Funciones de las poblaciones de tejón (Meles meles) teniendo en cuenta los coeficientes de compe-
tencia (α) que relacionan el valor de la población en equilibrio dinámico con el grado de intensidad de control 
no selectivo (ω). Todas las poblaciones se extinguen con una intensidad de control intermedia siguiendo un 
patrón lineal.

Meles meles

ficant differences between controlled and uncontro�
lled areas will not be found in the abundance of red 
fox (or those of other generalist predators showing 
a high intrinsic growth rate). But according to pre�
diction 1), if differences appear, the red fox will be 
more abundant in controlled areas; and iii) the most 
abundant populations of competing species showing 
low intrinsic growth rates will be found in areas where 
predator control programs are not implemented. Thus, 
statistically significant differences will be found in the 
abundance of predator populations with low intrinsic 
growth rate between controlled and uncontrolled 
areas, with the more abundant populations inhabiting 
the uncontrolled areas.

Discussion

Many managers of natural areas, gamekeepers and 
the hunting community in general have the perception 
that generalist predators (including several species of 
rodents, corvids, gulls, and carnivores) increase con�
tinuously and are so abundant that their populations 
should be controlled (e.g. Herranz, 2000; Garrido, 
2008). One of the most persecuted species is the red 
fox, blamed for reducing populations of game species 
(Herranz, 2000; Virgós & Travaini, 2005; Rushton et 
al., 2006; Beja et al., 2009). Although the belief that 
red fox populations are increasing everywhere and 
continuously is probably an exageration (see the case 
of a large Spanish region in Sobrino et al., 2009), it 
seems true that under certain conditions this species 

can increase above normal values ​​(e.g. Beja et al., 
2009; Trewby et al., 2008). Surprisingly, the paradox 
is that these real increases in abundance, as in the 
case of other generalist predators, occur even though 
their populations are subjected to permanent control 
campaigns (Herranz, 2000; Virgós & Travaini, 2005; 
Beja et al., 2009).

Caut et al.´s competitor release effect (CRE) 
described an ecological mechanism that is applicable 
to mesocarnivore populations and could theoretically 
explain this paradox (2007). The CRE framework 
implies a scenario where the carnivores community 
is shaped by a number of species presenting������ nega�
tive interspecific interactions (–,–) and experiencing 
a non–selective predator control program. Under 
these conditions, our theoretical results predicted 
that certain changes will occur in the composition and 
structure of the community. Thus, predator control 
efforts might eliminate populations with a low intrinsic 
growth rate (r) and only the population with a high 
rate of increase might persist (in our case the red 
fox, whose populations showed a growth rate higher 
than 0.9), unless the control is extremely intense. 
Surprisingly, if the control level is moderate, then the 
populations of these species of generalist predators 
could increase in a paradoxical way, even surpas�
sing the theoretical value for maximum population in 
equilibrium in the presence of the remaining species. 
This is due to both the disappearance of competitors 
and their higher reproductive capacity. Moreover, 
the ecological consequences of a mechanism such 
as the CRE might be similar to those produced by 
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the mesopredator release effect (see Soulé et al., 
1988; Courchamp et al., 1999a), if net predation on 
certain prey species were to increase as a result of 
the population increase of control–resistant predators 
(Caut et al., 2007). Our modelling therefore supports 
both the CRE hypothesis and the MRE hypothesis.

We found three predictions from our model evalua�
tion that should be specifically tested with empirical 
data obtained in the field. In general, these predictions 
are based on the fact that red fox populations (in our 
case scenario) will increase or maintain their numbers 
despite the implementation of predator control efforts 
(Predictions 1 and 2), while other species of carni�
vores will become less abundant (Prediction 3). It is 
expected that the most sensitive species disappear 
over time, so that species richness will decrease 
in controlled areas (see Estes & Terborgh, 2010). 
Interestingly, the few data available in the scientific 
literature seem to support our findings. For example, 
the results of a study carried out in Portugal showed 
that in hunting grounds where predator control was 
practised, the abundance of red fox was almost 
twice as high as in non–hunting areas (Beja et al., 
2009), which appears to bear out Predictions 1 and 
2. Moreover, other species of predators tended to 
be more abundant in uncontrolled areas, supporting 
Prediction 3 in our study.

Similarly, predator control on badgers in the UK 
increased the red fox population, again appearing to 
meet Prediction 1 (Trewby et al., 2008). The results 
obtained by Virgós & Travaini (2005) in Spain also 
appear to generally support the CRE predictions. The�
se authors detected the absence of some carnivores 

in controlled areas, while the red fox frequency of 
occurrence in both controlled and uncontrolled areas 
was similar. However, field data collected following a 
carefully designed study protocol are needed to relia�
bly test the CRE model predictions found in this study.

In our model, no explicit consideration was given 
to the effects that spatial heterogeneity, landscape 
pattern, and structure of a territory could have on the 
behaviour of population and community dynamics. 
There is evidence that landscape composition and 
quality affect interactions among species (Erlinge & 
Sandell, 1988; Hanski, 1995), the efficacy of predator 
control programs (Schneider, 2001; Rushton et al., 
2006), and therefore the persistence at a regional 
level of a given pool of species. Given that the model 
predicts the probabilities of differential extinction of 
the species in fragmented landscapes and complex 
environments, the long–term configuration of the 
communities will also depend on the different proba�
bilities of recolonisation (Hanski, 1994; Schneider, 
2001; Rushton et al., 2006). It is possible to speculate 
about the existence of deterministic processes within 
a community of carnivores subjected to non–selective 
control. These processes would occur at the local 
level, but predictable consequences would result at 
the landscape scale. These aspects should also be 
tested independently through further research with 
empirical data. 

The fundamental objective of predator control 
is an effective increase in the populations of prey 
species of interest to hunting or conservation (Trout 
& Tittensor, 1989; Reynolds & Tapper, 1995, 1996; 
Côte & Sutherland, 1997; Virgós & Travaini, 2005; 

Fig. 2. Functions for pine marten populations (Martes martes) follow a similar pattern to those of European 
badger, although their higher growth rate requires more intense control to completely eliminate the 
populations.

Fig. 2. Las funciones de las poblaciones de marta (Martes martes) siguen un patrón parecido a las de 
tejón, aunque su mayor tasa de crecimiento hace necesario intensificar el control para eliminar total-
mente las poblaciones.

Martes martes
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Reynolds et al., 2010). This is based on studies that 
found direct effects of control or natural reduction of 
predators on the abundance and dynamics of prey 
populations (e.g. Marcström et al., 1988, 1989; Small 
& Keith, 1992; Lindström et al., 1994). However, the 
success of predator control campaigns is variable and, 
in general, very expensive (Reynolds & Tapper, 1996; 
Côte & Sutherland, 1997).

Some studies have thus suggested that these 
practices are effective (regarding the above indicated 
objective) when applied at the local level, in conditions 
of very intense control, but only in the short–term (e.g. 
Reynolds et al., 1993; Harding et al., 2001; Keedwell et 
al., 2002). Other studies have shown that the predator 
control was ineffective in meeting management goals 
(Reynolds & Tapper, 1996; Côte & Sutherland, 1997; 
Banks, 1999; Herranz, 2000; Kauhala et al., 2000; 
Keedwell et al., 2002; Martínez–Abraín et al., 2004; 
Baker & Harris, 2006; King et al., 2009). Moreover, 
there are many predator species that do not affect game 
or threatened species. Thus, it has been argued that 
predator control can not be effective when focused on 
them (see for the cases of lizards, snakes and large 
gulls Herranz, 2000; Oro & Martínez–Abraín, 2007). 
Overall, it has been considered that the unique nature of 
predator–prey relationships within communities makes 
it difficult to make generalizations, and that evaluation 
of the effectiveness of conducting a predator control 

program thus requires individual consideration (Sih et 
al., 1998; Abrams & Ginzburg, 2000; Turchin, 2003; 
Holt et al., 2008; Valkama et al., 2005).  

On the other hand, predator management could 
have ecological costs that depend on the relative 
importance of the different uses and intrinsic values of 
the territory. For example, the ecological consequen�
ces of controlling one or various species of predators 
might be appraised positively or negatively depending 
on the environmental perception, and on the type of 
local use of the natural resources (Langley & Yalden, 
1977; Banks et al., 1998). Thus, perception might 
be different if predator control is used to enhance 
an endangered species rather than a game species 
(e.g. Côte & Sutherland, 1997; Keedwell et al., 2002). 
Furthermore, predator control also appears to affect 
different demographic parameters of the target pre�
dator species, including density, age structure, and 
inmigration patterns (see Yoneda & Maekawa, 1982; 
Rushton et al., 2006).

However, the more notable and more harmful 
effects of non–selective predator control are related 
to the conservation of threatened species of predators 
and the unwanted consequences on ecosystems due 
to the alteration of natural communities, such as the 
increase of generalist predators (including target 
species of the control) and pest species (including 
rodents), the decline of shared prey species (including 

Fig.3. Functions for red fox populations (Vulpes vulpes) are qualitatively different from those of the previous 
species due to an intrinsic growth rate higher than 0.9. Red fox populations thus show a non–linear response 
when persecuted depending on the level of competition: populations increase when competition coefficients 
are greater than 0.3 and control intensity is moderate. Furthermore, red fox populations do not become 
extinct despite intense predator control.

Fig. 3. Las funciones de las poblaciones de zorro (Vulpes vulpes) son cualitativamente diferentes de las de las 
especies anteriores debido a una tasa intrínseca de crecimiento mayor que 0,9. Así, las poblaciones de zorro 
muestran una respuesta no lineal cuando son perseguidas dependiendo del grado de competencia: las pobla-
ciones aumentan cuando los coeficientes de competencia son mayores que 0,3 y la intensidad del control es 
moderada. Además, las poblaciones de zorro no se extinguen aunque se aplique un control de predadores intenso.
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those of game interest), and unforeseen effects on 
vegetation, ecosystem function, and similar owing to 
chain reactions (e.g. Herranz, 2000; Martínez–Abraín 
et al., 2004; Rodríguez & Delibes, 2004; Virgós & 
Travaini, 2005; Caut et al., 2007; Cabezas–Díaz et 
al., 2009; Estes & Terborgh, 2010).

The theoretical results obtained in this study 
highlight the importance of competitive ecological 
interactions among predators in the design of an 
optimum management strategy for their communities 
(Courchamp et al., 1999a, 1999b; Trewby et al., 2008). 
Caut et al´s CRE has shown how the complex network 
of interactions (see also Polis & Holt, 1992; Chase 
et al., 2002; Caro & Stoner, 2003) among carnivore 
mammals can also lead to undesired effects, such as 
a population increase in the target species (the red 
fox or any predator with high reproductive capacity 
in our study, or the American mink Neovison vison 
Schreber 1777; see Bright, 1993; King et al., 2009), 
and the elimination of more sensitive species that 
might be of conservation interest. The obtained results 
support the idea that the design of programs to ma�
nage predator populations should consider potential 
consequences to communities and the ecosystem 
as a whole (Schneider, 2001; Zavaleta et al., 2001; 
Courchamp & Caut, 2005; Caut et al., 2007), as well 
as the biological traits of the involved species. To 
validate our model findings, empirical data should 
evaluate these responses and not just the individual 
species’ responses of the targeted predator and 
prey. The development of management strategies for 
species such as the red fox populations should take 
the ecological framework into account, and predator 
control programs should be thoroughly evaluated to 
determine the potential impact on the community and 
ecosystem. This is particularly important for preda�
tor control programs using non–selective methods 
(e.g. Herranz, 2000; Virgós & Travaini, 2005; Beja 
et al., 2009), where numbers of red foxes and other 
generalist predators can increase despite the efforts 
of managers.
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