Lack of genetic structure of Cypriot Alectoris chukar (Aves, Galliformes) populations as inferred from mtDNA sequencing data

M. Guerrini, P. Panayides, P. Hadjigerou, L. Taglioli, F. Dini & F. Barbanera

Abstract
Lack of genetic structure of Cypriot Alectoris chukar (Aves, Galliformes) populations as inferred from mtDNA sequencing data.— The Chukar (Alectoris chukar cypriotes) is the most common game bird in Cyprus. Since 1990 the Cypriot Government has established a restocking program with captive-reared birds. However, this program has not been guaranteed by checking the genetic nature of wild and farmed samples, either in the areas controlled by the Cypriot Government or in northern Cyprus. The sequencing of both Cytochrome–b and Control Region of the mitochondrial DNA was carried out for 61 Cypriot representatives and 14 specimens of the same subspecies from Crete and Israel. Only the A. chukar maternal lineage was found. A partitioning of Cypriot specimens among different clades was not reliably supported, whereas robust bootstrap values weighted for an evolutionary divergence between Cypriot and Cretan Chukars. An overall genetic homogeneity of the Cypriot populations was disclosed, whatever their status (captive vs. wild stocks) and origin (Government controlled vs. occupied areas) would be, a higher nucleotide diversity of the wild vs. captive representatives notwithstanding.

Key words: Chukar, Control Region, Cytochrome–b, Genetic diversity, mtDNA, Partridges.

Resumen
Falta de estructura genética en las poblaciones chipriotas de Alectoris chukar (Aves, Galliformes), deducida de los datos de secuenciación del ADNmt.— Una subespecie de la perdiz chucar (Alectoris chukar cypriotes) es el ave de caza más común de Chipre. A partir de 1990 el gobierno chipriota estableció un programa de repoblación utilizando aves criadas en cautividad. No obstante, dicho programa no ha sido avalado mediante la comprobación de la naturaleza genética de muestras tanto de ejemplares salvajes como de granja, ni en las zonas controladas por el gobierno chipriota ni en el norte de Chipre. Se ha llevado a cabo la secuenciación del citocromo–b y de la región de control del ADN mitocondrial de 61 ejemplares chipriotas y de 14 especímenes de la misma subespecie de Creta y de Israel. Sólo se encontró el linaje materno de A. chukar. No se pudo demostrar con fiabilidad el reparto de los especímenes chipriotas en distintos clados, mientras que unos valores bootstrap muy consistentes sustentaban una divergencia evolutiva entre las perdices chucar chipriotas y cretenses. Se reveló la existencia de una homogeneidad genética en las poblaciones chipriotas, cualquiera que fuera su estatus (linajes cautivos frente a salvajes) o su origen (zonas controladas por el gobierno frente a zonas ocupadas), por más que se diera una mayor diversidad de nucleótidos de los ejemplares salvajes frente a los cautivos.

Palabras clave: Perdiz chucar, Región de control, Citocromo–b, Diversidad genética, ADNmt, Perdices.

(Received: 19 II 07; Conditional acceptance: 14 III 07; Final acceptance: 20 III 07)
Introduction

The Chukar partridge (*Alectoris chukar*, Galliformes) is the most common and most popular game bird in Cyprus, the third largest island in the Mediterranean after Sicily and Sardinia. Cyprus also harbours the *A. c. cypriotes* Hartert, a 1,917 subspecies, which is reported to inhabit the Aegean islands (Crete included), southern Turkey and Israel (Madge & McGowan, 2002). Records of the Chukar in Cyprus date back to the Bronze Age (Watson, 1962). It inhabits a wide area, covering rocky habitats with maquis and/or phrygana between the coastal area and the forested peaks of the Troodos Mountains. Cyprus has the largest *A. chukar* population in Europe, with a yearly harvest estimated at 254,000–600,000 hunted birds (1986–2006: P. Panayides, pers. comm.).

Hunting occurs throughout the Chukar’s large distribution range that is claimed to extend from the eastern Mediterranean throughout central Asia and up to Manchuria (Madge & McGowan, 2002). Due to its limited range within Europe, up to Manchuria (*Madge & McGowan, 2002*). The Chukar’s large distribution range that is claimed to extend from the eastern Mediterranean throughout central Asia and up to Manchuria (*Madge & McGowan, 2002*). The Chukar population in Europe, with a yearly harvest estimated at 254,000–600,000 hunted birds (1986–2006: P. Panayides, pers. comm.).

The Chukar partridge (*Alectoris chukar*, Galliformes)

Material and methods

Sampling

Seventy-five *A. chukar cypriotes* specimens were investigated. Samples (liver) were obtained from wild birds (*n* = 24) hunted in two Government-controlled regions of Cyprus, namely the Alykes coastal wetland area near Larnaca (*n* = 12) and the mountains of the Paphos Forest (*n* = 12). Samples of wild birds hunted in the Turkish controlled part of northern Cyprus (Karpas Peninsula, *n* = 8) were also collected (fig. 1). The above-mentioned populations were originally considered wild, as they have never been restocked with captive specimens (P. Panayides, pers. com.). We also collected samples (feathers) of captive birds (*n* = 29), obtained from both state (Stavrouvoni, Larnaca District, *n* = 12) and private game farms (Theodosis: Ayious Limassol District, *n* = 6; Sam: Alassa, Limassol District, *n* = 6; Vorvoromitas, Agrokipia, Nicosia District: *n* = 5; see fig. 1). Samples obtained from shot birds were carefully collected in order to avoid the analysis of specimens from the same covey. In order to do so, only one sample per hunting trip was kept for genetic analysis. Samples (liver) from *A. chukar* specimens hunted in Crete (Greece, *n* = 7) and in Israel (*n* = 7) were also investigated to estimate their possible genetic differentiation with respect to the Cypriot populations. Additional samples from Red-legged Partridge (*Alectoris rufa*, *n* = 3, liver, Spain), Rock Partridge (*A. graeca*, *n* = 2, feathers, Italy) and Barbary Partridge (*A. barbara*, *n* = 1, liver, Italy) were also used as references for the remaining Mediterranean *Alectoris* partridges. The Gene Bank accession codes of the sequences employed in this work are as follows: Cyt-b, from AM492908 to AM492953, from AM084553 to AM084575, AJ586141, AJ586147, AJ586150, AJ586157 and AJ586158; CR: from AM084616 to AM084645, from AM492954 to AM492998, AJ586190, AJ586196, AJ586198, AJ586206 and AJ586207.

DNA extraction, PCR amplification and sequencing

The total genomic DNA was extracted from liver fragments using Puregene® Genomic DNA Isolation Kit (Genta Systems, USA) and from feathers as reported by Barbanera et al. (2005). For each
specimen almost the entire Cyt–b gene (1,092 bp, total length = 1,143 bp) and the whole CR were amplified (Barbanera et al., 2005). PCR products were purified using BioRad Kleen Spin Columns and both DNA strands were directly sequenced on an ABI 310 automated sequencer (Applied Biosystems, USA). In order to assess the authenticity of the mtDNA amplifications, possible nuclear sequences of mitochondrial origin were checked by comparing sequences with those directly obtained from purified mtDNA (Barbanera et al., 2005). Specifically, mtDNA was isolated from the following samples: n. 6, 10, 27 and 42 (A. chukar) from Cyprus; n. 4 (A. chukar) from Crete; P 01 (A. rufa) from Spain; Uro 01 (A. graeca) and Ier 03 (A. barbara) from Italy.

Phylogenetic data analysis

The alignments of Cyt–b and CR sequences from 81 specimens were completed with Clustal (Thompson et al., 1994). The Partition–Homogeneity test as implemented in PAUP* 4.0b10 (Swofford, 2002) was applied to 1,000 replications of a heuristic search with character partitions to determine the statistical validity of combining the two mtDNA genes for the phylogenetic analysis. As the test detected no significant differences among mtDNA gene partitions ($P = 0.667$), the Cyt–b and CR sequences were analysed as combined mtDNA dataset.

Fig. 1. The studied area in the Mediterranean: A. The relative positions of Crete, Cyprus and Israel are indicated; B. The localities of the sampled Cypriot A. chukar populations are indicated (1. Stavrouvoni state farm; 2. Theodosis private farm; 3. Vorvoromitas private farm; 4. Sam private farm; 5. Alykes Larnaca coastal wetland area; 6. Paphos Forest; 7. Karpas Peninsula, in the Turkish occupied territory).

The phylogenetic signal was evaluated (i) by means of the index of substitution saturation (Iss, Xia test with 1,000 replicates: Xia et al., 2003) using DAMBE 4.2.13 software (Xia & Xie, 2001), and (ii) by plotting the number of transitions (Ti) and transversions (Tv) against a corrected genetic distance that was obtained by exporting the relative matrix produced by PAUP into Microsoft Excel. Finally, the software MEGA 3 (Kumar et al., 2004) was employed to compute nucleotides composition, genetic distances and nucleotide diversity (π). Phylogenetic relationships were inferred using both distance and parsimony methods as implemented in PAUP. Concerning the distance method, the model of DNA substitution that best fitted the data was selected using the software FindModel (Los Alamos National Laboratory, New Mexico, USA: http://hcv.lanl.gov/content/hcv–db/findmodel/findmodel.html). FindModel is a weighted neighbour–joining–based (NJ) procedure set up by Bruno et al. (2000). It was developed as web implementation of the program Modeltest (Posada & Crandall, 1998). The HKY85 algorithm (Hasegawa et al., 1985) with gamma distribution was then singled out according to the Akaike Information Index criterion (Posada & Buckley, 2004), and the calculation of the α shape parameter was performed as reported by Sullivan et al. (1995). The Maximum parsimony (MP) procedure was set up as follows: unweighted, with TBR swapping algorithm and random addition.
sequence limited to 10 rearrangements per bootstrap replicate. Gaps were treated as fifth base. Multiple MP trees were collapsed to obtain a 50% majority–rule consensus tree. For both kinds of reconstruction a Barbary Partridge sequence was employed as outgroup and the statistical support was evaluated by bootstrapping (BP, with 1,000 resampling steps: Felsenstein, 1985).

The partition of the genetic diversity among and within *A. chukar* populations was investigated by means of the analysis of molecular variance (AMOVA, Arlequin 3.01 software package: Excoffier et al., 2005) using pairwise F_{ST} distances of Wright’s (1965) F–statistics. Distance values were plotted on the first two axes of a Principal Components Analysis (PCA) carried out using the Statistica® ver. 5.0/W Statistica package (Statsoft Inc., USA). The software Arlequin was also used to calculate the haplotype diversity (h) and to check for neutral evolution of the investigated mtDNA sequences (Tajima neutrality test).

Results

Phylogenetic data

The alignment of joint Cyt–b and CR sequences defined a set of 2,256 characters, indels included (only in the CR). More particularly, the *A. chukar* Cyt–b sequences were all 1,092 bp long whereas the CR sequences were all 1,154 bp (cf., Randi & Lucchini, 1998). The real mitochondrial nature of the PCR products obtained from total genomic DNA was assessed by (i) comparison with the sequences from isolated mtDNA, (ii) the detected under–representation of guanine (13.4%), and (iii) the absence of indels and/or internal stop codons (only in the Cyt–b).

The analysis of the phylogenetic signal did not disclose any saturation. The average number of Ti was 4.4 higher than Tv, outgroup excluded. In the plot of the number of the Ti and Tv versus divergence measured by the γ–HKY85 evolutionary model, the Ti/Tv ratio was > 1 in the whole distance range (fig. 2). The Iss value ($= 0.299$) was found to be highly significantly smaller ($P < 10^{-5}$) than that of the critical Iss (Iss.c, the Iss value at which the sequences begin to fail to recover the true tree) assuming either symmetrical or asymmetrical topology for the phylogenetic reconstructions (Iss.c = 0.843 and Iss.c = 0.820, respectively).

Genetic distance analysis with γ–HKY85 algorithm ($\alpha = 0.152$) produced the NJ tree (92 variable sites) in figure 3. The BP values calculated by MP procedure were added below internodes, as MP produced a 50% majority–rule consensus
Fig. 3. The neighbour–joining tree computed by PAUP using HKY85 γ–genetic distances (α = 0.152) among the aligned 2,256 characters (indels included) of the joint Cyt–b and CR sequences. Numbers at the internodes indicate all the bootstrap percentage values computed in both the NJ (above internodes) and 50% majority–rule consensus MP (below internodes) tree. Rectangular boxes show identical sequences. The phylogenetic trees were rooted using an A. barbara sequence. Abbreviations: Cyp. Cyprus; Cre. Crete; Isr. Israel; P 01, Mallorca, Spain; A 01, Seville, Spain; RP 548, Ciudad Real, Spain; Uro 01–02, Southern Apennines, Italy; Ier 03, Sardinia, Italy.

Fig. 3. Árbol de proximidad calculado mediante PAUP utilizando las distancias genéticas γ–HKY85 (α = 0.152) entre los 2,256 caracteres alineados (incluyendo indels) de las secuencias ensambladas del citocromo–b y la región de control. Las cifras de los internodos indican los valores porcentuales bootstrap calculados mediante NJ (por encima de los internodos) y MP de consenso de la regla de la mayoría del 50% (debajo de los internodos). Los rectángulos indican secuencias idénticas. Los árboles filogenéticos se establecieron utilizando una secuencia de A. barbara. (Para las abreviaturas ver arriba.)
tree with the same topology as the NJ tree (152 parsimony informative characters; length, L = 372; consistency index, CI = 0.720; retention index, RI = 0.806). All specimens from Cyprus, Israel and Crete clustered in the same clade (NJ, MP: BP = 100%), showing only the mtDNA lineage corresponding to the Chukar phenotype. Both the A. rufa and A. graeca clades clearly diverged with respect to the A. chukar clade (cf., Randi & Lucchini, 1998). Within the A. chukar clade, four clusters supported by BP ranging around 65% and including only Cypriot specimens were found. There was no geographic consistency within these groups, each cluster being formed by specimens from different regions of Cyprus. Most of the A. chukar specimens from Israel had a basal position within the clade, with the exception of three specimens clustering apart (A. chukar Isr61,63,67: NJ, BP = 93%; MP, BP = 92%). All of the specimens from Crete grouped together in the A. chukar clade (NJ, BP = 84%; MP, BP = 87%).

Cytochrome–b heteroplasmy

A mtDNA heteroplasmonic event was disclosed in the Cyt–b sequence of the A. chukar Cyp27 specimen. Amplification was obtained from purified mtDNA and direct sequencing disclosed a double peak on the chromatogram of both DNA strands, revealing a single nucleotide polymorphism (Gene Bank accession codes: AM084572 and AM084573). Indeed, at pos. 504 (cf., Randi, 1996), either guanine or adenine was found (3rd codon pos., no aminoacidic change), the latter being present in all of the Chukars sequenced in this work.

<table>
<thead>
<tr>
<th>Region</th>
<th>Ap</th>
<th>Wp</th>
<th>F_{ST}</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cy</td>
<td>6.5</td>
<td>93.5</td>
<td>0.065</td>
<td>0.078</td>
</tr>
<tr>
<td>Cy + I</td>
<td>22.1</td>
<td>77.9</td>
<td>0.221</td>
<td>< 10^{-5}</td>
</tr>
<tr>
<td>Cy + Cr</td>
<td>40.5</td>
<td>59.5</td>
<td>0.405</td>
<td>< 10^{-5}</td>
</tr>
<tr>
<td>Cy + I + Cr</td>
<td>42.3</td>
<td>57.7</td>
<td>0.420</td>
<td>< 10^{-5}</td>
</tr>
</tbody>
</table>

Table 1. Results of the AMOVA analysis for the A. chukar populations: Sv. Source of variation (in %, Ap. Among populations, Wp. Within populations); Cy. Cyprus; I. Israel; Cr. Crete.

Fig. 4. PCA performed using the pairwise F_{ST} distances calculated for all A. chukar ingroups of the phylogenetica reconstructions provided in figure 3. Single specimens were grouped according to each population as reported in table 2.

Fig. 4. PCA llevado a cabo utilizando las distancias F_{ST} en grupos de dos, calculadas para todos los grupos homogéneos de A. chukar de las reconstrucciones filogenéticas de la figura 3. Los ejemplares aislados se agruparon por poblaciones, tal como se indica en la tabla 2.
Genetic diversity

As reported in table 1, AMOVA indicated that, when only the Cypriot populations were taken into account, 93.5% of the total genetic variability was distributed within populations, and 6.5% among populations (FST index = 0.065). When Israeli or Cretan populations were also analysed, the FST value increased to 0.221 and 0.405, respectively. When all of the *A. chukar* populations were considered, 57.7% of the total genetic variability was distributed within populations, and 42.3% among populations (FST = 0.420). When the FST distances calculated for the *A. chukar* sequences were plotted on the first two axes of a PCA (fig. 4), the first two components explained 96% of the total genetic diversity. A significant divergence between the populations from Cyprus, Israel and Crete was disclosed. The genetic distance value calculated between Cypriot and Israeli populations ranged around 0.14%, whereas that between Cypriot and Cretan populations ranged around 0.34%.

The alignment of the *A. chukar* sequences disclosed a total of 35 haplotypes defined by 77 polymorphic sites (table 2). More particularly, 22 haplotypes were unique, most of them (17) being restricted to Cyprus. The haplotype diversity (h) was high, its average value ranging around 0.85. The lowest value (h = 0.67) showed by the Cretan population was different from those of the other populations (Bonferroni post–hoc multiple comparisons: one way ANOVA, *P* < 10^{-5} and Bonferroni test, *P* < 0.05). The Israeli population showed the highest value of nucleotide diversity (*P* = 0.25%: ANOVA, *P* < 10^{-5}; Bonferroni test, *P* < 0.05 versus all populations). Among Cypriot representatives, the nucleotide diversity of the Karpas Peninsula population (*P* = 0.17%, the highest value) differed significantly from those calculated for the Stavrouvoni, Theodosis and Sam farmed stocks (ANOVA, *P* < 10^{-5}; Bonferroni test, *P* < 0.05). Finally, with the exception of the mtDNA sequences obtained from the Stavrouvoni population, all the others evolved neutrally (Tajima's D: table 2).

Discussion

A great number of travellers’ notes reported that Chukar was abundant in the eastern Mediterranean until the 19th century. Nowadays, Chukar populations have disappeared from several Greek islands. There are a few exceptions, but surviving populations are small and suffering decline due to abandonment of traditional wheat crops, illegal hunting and habitat disappearance or deterioration (Papavangelou et al., 2001). Furthermore, genetic studies dealing with Mediterranean *A. chukar* populations are scarce (Tejedor et al., 2005; Barbarera et al., in press) when compared to those referring to *A. rufa* and *A. graeca*, the only exception being the *A. chukar* populations colonizing Israel (see Randi et al.,...
2006 for a review). Disappointingly, such a poor genetic knowledge is potentially harmful for the conservation of the species. As discussed by Frankham (2005), it can lead to misguided management plans because of the risk of introduction of non–endemic, invasive genotypes or subspecies through restocking with captive stocks.

Since 1990 the Cypriot A. c. cypriotes populations have been subjected to restocking by the Game Fund (Ministry of Interior, Cyprus). Such a release program originally involved captive stock from Stavrouvoni state farm that originated from eggs collected in the wild. The program was later extended to a restricted number of private farms, which started to rear Chukars under the supervision of the Game Fund. A 2,256 character dataset provided by sequencing of Cyt–b and CR mtDNA markers from 75 partridges that showed the outwardly identifying features of the A. chukar species, was analysed to gain insight into the genetic kinship of Cypriot, Cretan and Israeli populations. According to the “total evidence” approach stating that the phylogenetic analysis should be performed on a combined dataset using all of the possible evidence (Kluge & Wolf, 1993), the tree reconstruction was accomplished using previously joined Cytb and CR sequences. The results showed a flawless correlation between the mtDNA lineage and the outward Chukar appearance of the analyzed representatives (fig. 3). Taking into account that anthropogenic hybridization between A. chukar and A. rufa is a widespread phenomenon even in small islands, whatever the parental origin of the introgressive swarms could be (Barbanera et al., 2005; Barbanera et al., in press), the absence of allochthonous mtDNA lineages is a promising result for the conservation of the native A. chukar genome in the eastern Mediterranean. Further, no robust genetic differentiation between farmed and wild Cypriot populations was found (BP < 70%, fig. 3; cf., Felsestein, 2004), also when specimens from north Cyprus were considered. Within the A. chukar clade, only a few Israeli representatives clearly clustered apart from the remaining ingroups (BP > 90%, fig. 3). This might be related to the known genetic differentiation due to geographical isolation of Israeli Chukar populations occurring across the north Negev ecotone (Randi et al., 2006).

The AMOVA analysis of the Cypriot A. chukar showed that the very large majority of the genetic variability was distributed among individuals, the populations thus representing a largely homogeneous group. Only when Cretan and Israeli Chukars were also taken into account in the analysis, was an overall, significant divergence found (table 1). On one hand, the differentiation that was disclosed between Cypriot and Cretan populations (figs. 3, 4: average genetic distance = 0.34%) was in agreement with the morphological evidence reporting that Cretan A. c. cypriotes specimens are smaller and darker than Cypriot specimens (Cramp & Simmons, 1980). Such a slightly variant phenotype has accounted for the past assignation of the Cre-
dom suggests that a regular renewal of the captive breeding stocks by means of selected drawing from wild populations would not be just an academic exercise. Finally, the occurrence of genetic differentiation particularly between Cypriot and Cretan A. chukar populations suggests that translocation of birds throughout the eastern Mediterranean should not be recommended, although Cyprus and southern Aegean islands officially harbour the same subspecies (Madge & McGowan, 2002). In conclusion, a large data set will hopefully be available following the STR markers–based study that the University of Pisa is developing in collaboration with the Cypriot Ministry of the Interior, the Greek Hunting Federation of Macedonia–Thrace and the Bahauddin Zakariya University (Multan, Pakistan). The goal of this study is the identification of both Mediterranean and Asian A. chukar populations in order to bring the exchange of commercial stocks into line with knowledge of the genetic kinship, thus conferring to their management the status of a scientific process.

Acknowledgements

The authors are particularly grateful to: M. Miltiadou (BirdLife Cyprus) and M. Xenophonos for their helpful comments on this paper; C. Sokos and P. Birtsas (Hunting Federation of Macedonia–Thrace, Thessaloniki, Greece) for the A. chukar samples from Crete; E. Randi (National Wildlife Institute, Bologna, Italy) for the A. chukar samples from Israel; J. J. Negro (Estación Biológica de Doñana, Seville, Spain) for the A. rufa samples Spain; M. Paganin (Urogallo stock–farm, Asiago, Italy) for the A. graeca samples from Italy; M. Muzzeddu (Wildlife Recovery Centre, Sassari, Italy), and T. Corrias for the A. barbara sample from Sardinia (Italy). This work was supported by grants from the Cypriot Game Fund Service, Ministry of the Interior, Nicosia, Cyprus and the Province of Leghorn, INTERREG III Toscana–Corsica–Sardegna.

References

tages of the AIC and Bayesian approaches over likelihood ratio tests. *Systematic Biology*, 53: 793–808.

